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Received 1 November 2005; received in revised form 15 June 2006; accepted 14 August 2006

Available online 16 October 2006
Abstract

This paper presents a study of the lateral vibrations of straight and curved cables with no axial pre-load. For the

computation of the vibration transmissibility we used finite elements based on the Euler–Bernoulli theory. The dissipation

of energy was studied with viscous- and structural-damping models, where the Rayleigh coefficients and the frequency

dependence of the loss factor were identified. By using the equality between the measured and the computed natural

frequencies the frequency dependence of the dynamic modulus of elasticity was estimated and used for all the studied types

of cable. The excitation was the result of moving the support in a direction perpendicular to the axis of the cable. The

mathematical model for the computation of the vibrations of the straight and curved cables was verified with experimental

measurements in which the support excitation was achieved with an electrodynamic shaker and the amplitude force was

measured at the fixed support with a dynamometer. For the curved cable the mathematical model was verified for in-plane

and out-off-plane vibrations. Three straight cables of different lengths were analyzed for the dependence of the Rayleigh

coefficients on the length of the cables.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the automotive industry has had a requirement for modeling the lateral vibrations of steel cables
with no axial pre-load. A large number of investigations into the dynamic behavior of cables where the axial
load on the cable was much greater than the bending load have been carried out. Many investigations of cable
statics and dynamics were carried out by Costello [1]. He modeled a strand of cable with several thin wires,
where the center wire is of sufficient size to prevent the outer wires from touching each other. Nawrocki and
Labrosse [2] presented a finite-element model of a simple straight wire rope strand. His model has proved to be
reliable in comparison with experimental data for every possible interwire motion. He considered either a pure
axial load or an axial load combined with a bending load. Koh and Rong [3] modeled the large displacement
motions of a cable for in-plane and out-of-plane motions, particularly for cables with a relatively low tension.
The axial, flexural and torsional deformations are taken into account in a mathematical model where the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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analytical formulation and the numerical iterative difference scheme are presented. The model was verified
with an experimental simulation and proved to be reliable.

Another significant aspect of the cable dynamics is the consideration of energy dissipation. The mechanisms
that have a significant influence on the energy loss are, for example, air resistance, internal material damping
and the friction between interwire motions. Although the damping forces are usually relatively small in
comparison to the stiffness and inertia forces, they have a significant influence on the dynamics behavior,
especially in the resonant regions. Many damping models were developed over the years [4–8], but none of
them can be used to describe the damping characteristics of an arbitrary structure. Viscous- and structural-
damping models are probably the most widely used models for the characterization of energy loss in structural
dynamics.

This paper is organized as follows. In Section 2 the physical and mathematical models with two possible
damping models (viscous and structural) are used to characterize the vibrations of cables. The mathematical
model is based on the Euler–Bernoulli theory. In Section 3, the Rayleigh coefficients and the loss factor are
identified. The verification of the lateral force transmission over straight and curved cables with kinematic
support movement is described in Section 4.
2. Theoretical background

An essential characteristic of the mathematical model we used for the dynamical analysis of straight and
curved thin cable strands (later cable) is the absence of an axial load. Analyses [9] have shown that cables can,
in many cases, be modeled as beams under an axially acting load. In this paper we will consider the dynamic
behavior, first of straight bending cable and second of an arbitrary curved cable, both without an axial pre-
load. The Euler–Bernoulli beam theory will be used. The emphasis is placed on linear models of damping, i.e.,
proportional viscous damping in terms of the Rayleigh coefficients and structural damping in terms of the
complex modulus of elasticity. The linearity assumption in the two damping models is mainly because of the
low-stress regime, the shorter computation time and, most importantly for our research, the use of a relatively
simple mathematical model to calculate the vibration transmissibility over relatively complicated cable
structures. The physical model we used is shown in Fig. 1.

Euler–Bernoulli equation is used to model the lateral vibrations of a cable,

q2

qx2
ĒðoÞI

q2wðx; tÞ

qx2
þ c

qwðx; tÞ

qt
þ rA

q2wðx; tÞ

qt2
¼ f ðx; tÞ, (1)

where f ðx; tÞ is the external force per unit length, r is the mass density, A is the area of the cross-section, wðx; tÞ
is the lateral displacement at distance x and at time t, I is the second area moment, c is the viscous-damping
coefficient and ĒðoÞ is the frequency-dependent complex modulus of elasticity. For the assumption of a
viscoelastic material (structural-damping model) the complex modulus of elasticity is given by Eq. (2) [10],

ĒðoÞ ¼ EdðoÞ þ iElðoÞ ¼ Ed ðoÞð1þ iZðoÞÞ, (2)

where EdðoÞ is the dynamic modulus, ElðoÞ is the loss modulus, ZðoÞ is the loss factor, and i ¼
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Fig. 1. The physical model for the cable and the finite element.
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For modeling the vibrations of the arbitrary curved cable in space, the torsional vibrations are considered
with Eq. (3)

q
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qx

� �
� ct

qyðx; tÞ
qt
þmT ðx; tÞ ¼ I0

q2yðx; tÞ
qt2

, (3)

where Ḡ is the complex shear modulus, J is the second area polar moment of the cross-section, ct is the
torsional damping coefficient, yðx; tÞ is the angle of twist at a distance x and at time t, I0 is the moment of
inertia per unit length and mT is the applied twisting moment per unit length. The longitudinal vibrations of
the cable can be modeled with

q
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qx

� �
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quðx; tÞ

qt
þ f lðx; tÞ ¼ rA
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qt2

, (4)

where uðx; tÞ is the longitudinal displacement at a distance x and at time t, cl is the longitudinal damping
coefficient and f lðx; tÞ is the longitudinal external force. In Eqs. (1), (3) and (4) both damping models can be
considered. For the viscously damped model we assume that the damping coefficient ca0 and that the loss
modulus is equal to zero (ElðoÞ ¼ 0). For the assumption of the structural-damping model the conditions are
c ¼ 0 and EdðoÞ;ElðoÞa0:

For the numerical computation of the vibration transmissibility, the finite elements were used. In the finite-
element formulation the following assumptions were made: geometrical linearity, the level of excitation is low,
the plane section remains planar after deformations, the material of the cable is homogeneous and isotropic,
the displacements and rotations are uncoupled.

Bearing in mind Eqs. (1), (3) and (4), the displacement function Û on the finite element can be found with

Û ¼ NU, (5)

where N represents the interpolation functions of the finite element and U is the nodal displacement. In the
case of lateral vibrations of the cable, the third-order Hermitian polynomials are used, and for the torsional
and longitudinal vibrations the second-order polynomials are used. According to Fig. 1 the nodal
displacements are

U ¼ fu1 v1 w1 g1 z1 x1 u2 v2 w2 g2 z2 x2g
T. (6)

The stiffness matrix ki and the mass matrix mi of the finite element are then derived according to Eqs. (7) and
(8), respectively, where index i denotes the ith finite element.

ki ¼ BTDB dV ; i ¼ 1 . . .N, (7)

mi ¼ NTrNdV ; i ¼ 1 . . .N, (8)

where B is the strain–displacement matrix, D is the stress–strain matrix of the material of volume dV , and N is
the number of all the finite elements used along the cable length.

Because of the arbitrary position of the cable in space, the local stiffness and mass matrices of the finite
elements must be transformed according to the global coordinate system. For each finite element the
transformation can be made within two basic steps, Fig. 2(b) and (c), that formulate the transformation
matrix T

T ¼

k 0 0 0

0 k 0 0

0 0 k 0

0 0 0 k

2
6664

3
7775, (9)

where k represents the direction-cosine-matrix (rotational matrix). The first step (transformation) can be
made with a rotation of the finite element about angle t around the y axis, where the w-axis is placed on
the XZ plane of the global coordinate system. The second transformation can be made around the
newly formulated zt axis for angle g. With these two transformations made, the direction-cosine-matrix
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Fig. 2. Transformation from the local coordinate system of the finite element to the global coordinate system of the cable strand: (a)

definition of the local and global coordinate systems, (b) positions of the cable after first rotation, (c) positions of the cable after second

rotation.
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can be defined with Eq. (10).

k ¼
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cosðu;ZÞ cosðv;ZÞ cosðw;ZÞ
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2
64

3
75. (10)

The new, transformed stiffness and mass matrices of the ith element can then be formulated as

Ki ¼ TT
i kiTi,

Mi ¼ TT
i miTi. (11)

Bearing in mind the two different damping models and with an assumption of harmonic excitation, Eq. (12)
for the viscous-damping model and Eq. (13) for the structural-damping model, can be defined

M€qvðtÞ þ C_qvðtÞ þ KqvðtÞ ¼ Fve
iot, (12)

M€qsðtÞ þ ð1þ iZÞKqsðtÞ ¼ Fse
iot, (13)

where M, K and C are the mass, stiffness and viscous-damping matrices of the system of finite elements and F

is the vector of the nodal forces of the finite elements. Index v denotes the mathematical model with the
viscous-damping model and s with the structural-damping model. In our study the main point of interest was
the amplitude of the response signal in the frequency domain. The particular solution for Eqs. (12) and (13)
can be written in the form

qðtÞ ¼ XeiðotþjÞ, (14)

where X is the vector of displacement and rotation amplitudes, o is the excitation frequency and j is the phase
shift. The partially uncoupled equations with partitioning to the known and unknown node displacements and
rotations are shown in Eqs. (15) and (16) for the case of the viscous and structural-damping models,
respectively.

�o2
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" #
þ io

Cvv Cvp

Cpv Cpp

" #
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" # !
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 !
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 !
, (15)

�o2
Mss Msp

Mps Mpp

" #
þ ð1þ iZÞ

Kss Ksp

Kps Kpp

" # !
Xs

Xp

 !
¼

Fs

Fp

 !
. (16)

The indices v and s denotes the unknown node variables for the considered viscous and structural-damping
models, respectively, and index p is used to denote the supported node variables. The main interest is the
unknown value of the force amplitude Fp at the fixed support while the kinematic excitation Xp is applied at
the other fixed support, Fig. 1.
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By setting the external forces Fv and Fs to zero, and with the known kinematic excitation Xpa0, we can
derive the expression for the force amplitude in fixed supports for:
1.
 the viscous-damping model:

Xv ¼ ðKvv þ ioCvv � o2MvvÞ
�1
ðo2MvpXp � KvpXp � ioCvpXpÞ, (17)

Fp ¼ �o2ðMpvXv þMppXpÞ þ ioðCpvXv þ CppXpÞ þ KpvXv þ KppXp. (18)
2.
 the structural-damping model:

Xs ¼ ðð1þ iZÞKss � o2MssÞ
�1
ðo2MspXp � ð1þ iZÞKspXpÞ, (19)

Fp ¼ �o2ðMpsXs þMppXpÞ þ ð1þ iZÞðKpsXs þ KppXpÞ. (20)
For the computation of the vibration transmissibility the transfer response function in terms of the apparent
mass (TRFAM, [11]) was computed and measured according to Eqs. (18) and (20). For the discrete frequency
oi the TRFAM can be computed as

TRFAMðoiÞ ¼
F pðiÞ

X pðiÞ

, (21)

where F pðiÞ and X pðiÞ represent the force and the displacement amplitude at the discrete frequency oi.
3. Identification of the damping parameters

For the two damping models used, the damping matrix C in Eq. (12), and the loss factor Z in Eq. (13) have
to be identified.
3.1. Identification of the damping matrix

The viscous damping is modeled in the form of proportional (equivalent) Rayleigh damping, where the
Rayleigh coefficients a and b have to be identified.

C ¼ aMþ bK. (22)

It can be shown from the orthogonality principle [12] that the relation between the ith damping ratio zi and the
ith natural frequency oi can be written in the form

zi ¼
a
2oi

þ
boi

2
. (23)

With two estimated natural frequencies and damping ratios from the measured signal, the Rayleigh
coefficients a and b can be estimated. In our study, the modal parameters were identified with the least-squares
time-domain method process [13,14] of the measured impulse response in the time domain at the clamped
support of the cable. The response of an m-degree-of-freedom transient is considered to be in the form

yðtÞ ¼ A0 þ
Xm

k¼1

Ake
�akt sinðoktþ fkÞ; k ¼ 1; 2; . . . ;m, (24)

where A0 is the zero-offset correction, Ak is the participation factor of the kth mode, ak is the damping of the
kth mode and ok and fk are the frequency and phase angle of the kth mode.

After identification of the modal parameters, the values of the Rayleigh coefficients a and b were obtained
with the least-squares fitting process of the modal parameters. For this purpose the pseudo-inverse routine was
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M. Otrin, M. Boltežar / Journal of Sound and Vibration 300 (2007) 676–694 681
used, see Eqs. (25)–(27), where the notation � represents the estimated values from the measurements.
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, (25)

and with simplified matrix notation

Z ¼AC. (26)

The pseudo-inverse process gives the estimated values of a and b in a vector C

C ¼ ðATAÞ�1ATZ ¼AþZ. (27)

The graphical representation for the theoretical values of the damping ratios versus the natural frequencies
for the proportional Rayleigh damping model is shown in Fig. 3. The graph clearly shows the influence of the
mass matrix (coefficient a) and the stiffness matrix (coefficient b) on the dissipation of energy from the model.
The curve that represents the influence of both the mass and the stiffness matrix is the most important because
the coefficients a and b were chosen to best fit the measured damping ratios. In the large majority of cases the
proportional damping can only be acceptable for the use in narrow frequency range. Our studies showed that
when the wider frequency range is considered, better approximation can be made (especially in the lower-
frequency region) if the coefficient a is set according to the measured damping ratio of the first measured
natural frequency. Afterwards, coefficient b is determined with the least-square process, see Eqs. (25)–(27),
considering the damping ratios of the second natural frequency to the highest accounted natural frequency in
the measurements. The process described was used for all the identifications of the coefficients a and b.

3.2. Identification of the loss factor

Many different methods have been developed to identify the complex modulus and the loss factor. The
standing-wave method and the non-resonant method are often used to identify the complex modulus. Oyadiji
and Tomlinson [15] reported the identification of the loss factor with the results from the resonant and non-
resonant methods with an absolute error between 0:4% and 8%. The only restriction is that the value of the
loss factor is less than 0.4. In our study the loss factor was estimated from the Nyquist plot of the measured
TRFAM. For linear systems, the Nyquist plot (for cases of receptance, mobility and accelerance) should in the
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Fig. 3. Influence of the mass and stiffness matrix on the damping ratio for the proportional Rayleigh damping model: mass-proportional

damping (��), stiffness-proportional damping (� � �), both mass-proportional and stiffness-proportional damping (—).
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resonant region take the approximate shape of a circle [16]. From the theoretical point, any possible deviation
from a circle, for example, an ellipse, can be caused by structural nonlinearities in the stiffness or damping
terms, which we did not observe.

Our studies showed that for linear case the TRFAMs in Nyquist plot (resonant regions) approximate to a
shape of a circle, where the deviation from the measured Nyquist circle can be approximated by an analytical
circular function. The process is schematically presented in Fig. 4. The main idea is to estimate the natural
frequency o0 and the boundary frequencies o1 and o2 from the fitted circular function for each resonant
region. The loss factors at the natural frequencies can be estimated with Eq. (28)

ZðkÞ ¼
o2

2ðkÞ � o2
1ðkÞ

2o2
0ðkÞ

, (28)

where the index k is the kth resonant region (natural frequency). Henwood [17] has shown that a loss factor of
less than 0:4 can be approximated with the known damping ratios of the viscous-damping model by Z � 2z.
Bearing this relation in mind we can compare the two identification processes, i.e., the least-squares time-
domain method process and the identification from a Nyquist plot in the frequency domain. The only
restriction with this kind of identification process is that the natural frequencies are not closely spaced.
3.3. Frequency dependence of the dynamic modulus of elasticity

The frequency dependence of the dynamic modulus of elasticity was identified with the adaptive process,
Fig. 5. The computed values of the natural frequencies were adapted to the measured ones. The iteration
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Table 1

Geometrical characteristics of the cable

I (m4) r (kg=m3) dcw (m) dow (m) Dib (m) Dob (m) j1 (�) j2 (�) s

3:1083� 10�12 7650 0:0005 0:0005 0:0024 0:0032 85 60 19
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process continued until the differences between the computed and measured values of the natural frequencies
were half of the frequency resolution in the measured TRFAM, which was 0:25Hz.

4. Experimental case study

The suitability of the mathematical model used for the straight and curved cables with no axial pre-load was
tested with an experiment. Both fixed ends of the physical model are shown in Fig. 6. The boundary conditions
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Table 3

Difference of the damping ratios for the two identification methods, for length l ¼ 0:328m

Mode number 1 2 3 4

LSMt 0.024 0.00984 0.0097 0.0098

NYf 0.021 0.011 0.014 0.012

Table 4

Difference of the damping ratios for the two identification methods, for length l ¼ 0:4m

Mode number 1 2 3 4 5

LSMt 0.071 0.028 0.0342 0.0315 0.027

NYf 0.062 0.039 0.035 0.0318 0.034

Table 2

Difference of the damping ratios for the two identification methods, for length l ¼ 0:253m

Mode number 1 2 3

LSMt 0.0323 0.0106 0.0103

NYf 0.029 0.0135 0.012
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Fig. 9. Approximated Rayleigh function (���) for measured damping ratios at natural frequencies (�) for straight cable lengths: (a)

0.253m, (b) 0.328m and (c) 0.4m; (d) changes of Rayleigh coefficients a(� � �) and b(���) with different lengths of cables.
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were the same for the straight and curved cables. The support excitation is obtained with the controlled
electrodynamic shaker and the force amplitude is measured at the fixed support with a dynamometer. The
cross-section of the cable is shown in Fig. 7.

The verification of the mathematical model was made on straight cables with three different lengths and on
an initially curved cable. Two cases of curved cable were studied, i.e., the cable in one plane and the cable in
space. The different lengths of the straight cable were analyzed for the purpose of defining the dependence of
the Rayleigh coefficient on the length of the cable. The cable was excited with a broadband noise signal in the
frequency range from 10 to 700Hz, with the RMS value of the excitation signal equal to 5m s�2.

4.1. Straight cable

The lengths of the analyzed straight cables were 0:253, 0:328 and 0:4m. The identification curve of the
frequency dependence of the dynamic modulus of elasticity (the adaptive process is shown in Fig. 5) was
proved to be valid for all the cases of analyzed cable shapes, and is shown in Fig. 8.

The second area moment can be calculated from the known geometrical characteristics of the cable,
including the helical angle of the outer wires and the outer band, with Eq. (29).

I ¼ Ic þ Ib ¼
p
64
ðs d4

ow sinj4
1 þ d4

cwÞ þ
p
64
ðD4

ob �D4
ibÞ sin j2. (29)

Ic is the second area moment of the cable wires and Ib is the second area moment of the outer band. dcw is the
diameter of the center wire, dow is the diameter of the outer wires, Dib and Dob are the inner and outer
diameter of the band, respectively, s is the number of outer wires and j1 and j2 are the helical angles of the
outer wires and the band according to the center wire of the cable (the cable is straight at j ¼ 90�). The mass
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Fig. 11. The TRFAM for the straight cable of length (a) 0.253m, (b) 0.328m and (c) 0.4m: (�) measurement, (—) structural-damping

model, (���) viscous-damping model.
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density of the material used for the studied cable was calculated using the known mass and volume of the cable
wires and the outer band. The estimated geometrical values are given in Table 1.

The differences in the identified damping ratios, using the least-squares fitting method (denoted by LSMt)
and the Nyquist plot (denoted by NYf ), are shown in Tables 2–4 for the straight cables of different lengths.
The approximation of the Rayleigh coefficients a and b were made using the process described in Section 3.1,
and they are shown in Fig. 9(a–c) for the straight cables. The dependence of the Rayleigh coefficients on the
lengths of the cables is shown in Fig. 9(d). The identified loss factors and the approximated quadratic function
are shown in Fig. 10(a–c). The reason for using the approximated quadratic function is in the fact that the
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Fig. 12. Geometry of the cable for studying the in-plane vibrations: (a) position one, (b) position two.
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Fig. 13. Approximation of damping ratios for direction x(�), yð4Þ and z(�) with Rayleigh damping model. Position of cable: (a) first,

(b) second, (c) third and (d) fourth.
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maxima of ZðoÞ is at the inflexion point of the Ed ðoÞ function [10]. The shape of the identified curve for EdðoÞ
‘‘insinuate’’, Fig. 8, that the quadratic-shape function can be used for the approximation of the ZðoÞ in the
least-squares fitting process.

The experimental verification of the mathematical model for the lateral vibrations of the straight cables in
terms of the TRFAM, for the z measurement direction, is shown in Fig. 11(a–c), where the differences between
the measured TRFAM and the computed TRFAM, with two different model of damping, can be seen.
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4.2. Curved cable

The mathematical model used for the cable with no axial pre-load was also verified for an arbitrary curved
cable. Two different shape settings of the curved cable were studied: (i) in-plane and (ii) out-of-plane
vibrations. The shapes of the studied cables were transmitted to the mathematical model with the help of the
measuring arm. The points were taken along the cable at intervals of 1 cm. This measuring procedure was
repeated three times, and the final shape of the curved cable used in the mathematical model was obtained
with an approximation using the measured points. The differences between the shape considered in the
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mathematical model and the shape of the experimental setting is estimated to have an absolute value of 0:8mm
in the direction perpendicular to the axis of the cable.

4.2.1. In-plane vibrations

Two different shapes of curved cable were analyzed for in-plane vibrations. The shapes (positions) are
shown in Fig. 12(a,b). The length of the cable in the first position was 0:63m, and in the second position it was
0:64m. The values of the approximated Rayleigh function (Eq. (23)) are shown in Fig. 13(a,b) for the first and
second positions of the cable. The approximated curve is based on the values of both measured directions, y

and z. This gives us independent values of the coefficients a and b with regard to the computed directions x

and z.
The values of the estimated Rayleigh coefficients, which were later used in the TRFAM analysis, are shown

in Fig. 14 for positions one and two.
The frequency dependence of the loss factor was identified from the Nyquist plot for each natural

frequency, see Section 3.2. The approximated curves of the loss factors for the first and second positions of the
cable are shown in Fig. 15(a,b). The approximations were made with regards to both measured directions and
were used in the subsequent TRFAM analysis.

The experimental verification of the vibration transmissibility in terms of the TRFAM measurement is
shown in Figs. 16 and 17 for the analyzed in-plane positions of the cable.

4.2.2. Out-of-plane vibrations

The out-of-plane motions were studied at two different positions of the cable, shown in Figs. 18 and 19. The
length of the cable in the third position was 0:68m, and in fourth position it was 0:55m. The Rayleigh
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Fig. 16. The TRFAM for the first position of cable: (�) measurement, (—) structural-damping model, (���) viscous-damping model.

Directions of force measurement: (a) x, (b) z.
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Directions of force measurement: (a) x, (b) z.

Fig. 18. Geometry of the cable for studying out-of-plane vibrations, position three.
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coefficients were identified with the same procedure used for the straight and in-plane curved cable, see
Sections 4.1 and 4.2.1. The results of the approximations are shown in Fig. 13(c,d). The values of the estimated
Rayleigh coefficients for positions three and four are shown in Fig. 14(cable position 3, 4). The identification
of the frequency dependence of the loss factor is shown in Fig. 15(c,d).

The experimental verification for the mathematical model with both presented damping models is shown in
Figs. 20 and 21 for all the measured direction.



ARTICLE IN PRESS

Fig. 19. Geometry of the cable for studying out-of-plane vibrations, position four.
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5. Conclusions

This paper presents an analysis of the lateral vibrations of straight and curved cables with no axial pre-load.
The excitation in terms of support motions was in the direction perpendicular to the axis of the cable. The
dissipation of the energy was approximated with two different models of damping, i.e., the viscous Rayleigh
model and the structural-damping model. Three different lengths of cable were analyzed for the purpose of
studying the influence of cable length on the identified Rayleigh coefficients. The results in Fig. 9(d) for the
straight cables and in Fig. 14 for the curved cables show that the changes in the Rayleigh coefficients a and b,
due to the different lengths, are not negligible and must be considered in the mathematical model. In order to
identify the damping ratios, the least-squares fitting method was used. The loss factors were identified from the
Nyquist plot, where the measured TRFAMs were approximated with a circular function. The frequency-
dependent curve of the loss factor was obtained from an approximation using a quadratic polynomial. The
main reason for choosing the quadratic polynomial was the shape of the identification curve of the dynamic
modulus of elasticity. From theory [10], the maximum of the loss-factor curve should be at the inflexion point
of the frequency-dependence curve of the modulus of elasticity. We estimated that there was one inflexion
point at approximately 15Hz. It can be seen from Fig. 10(a–c), for the straight cables, and from Fig. 13(a–d),
for the curved cables, that real systems do not always show the same behavior in terms of the point of the
maximum of the loss-factor curve approximation, because no distinct maximum value can be seen from the
figures at the inflection point of the modulus of elasticity. The frequency dependence of the dynamic modulus
of elasticity was estimated by an adaptive process and was proven to be the same for all the shapes and lengths
of the cables studied.

The measurement of the TRFAM showed that the viscous-damping model proved to increase in the
resonant regions in comparison to the structural-damping model. It is also clear that the difference between
the measured and the computed TRFAM is smaller if the coefficient a is estimated by the process described in
Section 3.1.

The mathematical model used was shown to be reliable for an estimation of the natural frequency of the
cables. The model was verified with TRFAM measurements for straight and curved cables with in-plane and
out-of-plane vibrations. Figs. 16, 17, 20 and 21 show the differences between the measured and computed
TRFAMs (curved cable) with both damping models. The main factors that could have a significant influence
on the inequality of the TRFAMs can be listed in three categories. The first influence could be the inexact
transmission of the cable geometry from the experiment to the geometry used in the mathematical model. The
second influence could be the inexact approximation of the boundary conditions accounted in the
mathematical model, compared to the experimental setup. In particular for our case, where the kinematic
excitation of the cable support was introduced, the rotational degree of freedom could arise at the point of
the fixed support (the point of kinematic excitation). This causes the boundary conditions, considered in the
experimental measurement, to have a lower local ‘‘boundary’’ stiffness than those accounted in the
mathematical procedure. We suspect that this is the main reason for the error that is introduced in the lower-
frequency regions, starting from theory [16]. In addition, the dynamical models are in general stiff-
ness-controlled in the lower-frequency regions, which also correspond to the influence of the boundary
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Fig. 20. The TRFAM for the third position of cable: (�) measurement, (—) structural-damping model, (���) viscous-damping model.

Directions of force measurement: (a) x, (b) y and (c) z.
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conditions. The third influence of the error could arise directly from the used mathematical model. The
mathematical model is relatively simple and is here used to analyze the transmissibility over very complex
cable structures.

Overall, the mathematical model with the structural-damping model is suitable for estimating the TRFAM
with an error in the amplitude of the TRFAM (linear) from 0% to approximately 	30% in some frequency
regions. The biggest difference between the measured and computed TRFAM is for the second position of the
cable in the x measurement direction and for fourth position of the cable in the z measurement direction. For
the two damping models used, the structural-damping model produced better results in terms of the
measurements of the TRFAM. The TRFAMs with the viscous Rayleigh model tend to increase in the
resonant regions compared to the measurements for the straight and curved cables.
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Fig. 21. The TRFAM for the fourth position of cable: (�) measurement, (—) structural-damping model, (���) viscous-damping model.

Directions of force measurement: (a) x, (b) y and (c) z.
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Portugal.

[12] I. Chowdhury, S.P. Dasgupta, Computation of Rayleigh damping coefficients for large systems, Department of Civil Engineering,

Indian Institute of Technology, India, 1998.

[13] W.R. Smith, Least-squares time-domain method for simultaneous identification of vibration parameters from multiple free-response

record, American Institute of Aeronautics and Astronautics, Inc., California, 1981, pp. 194–201.
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